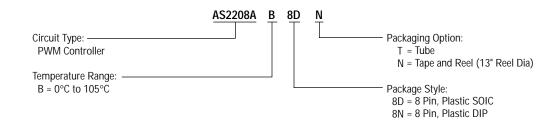


Features

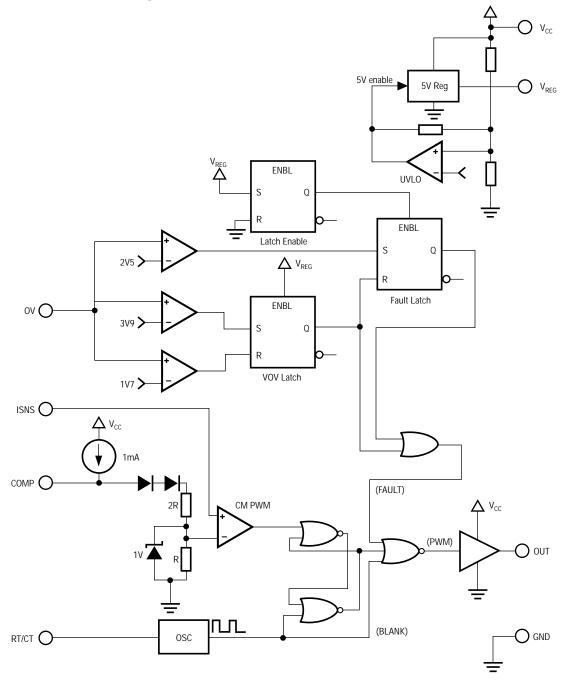
- Low start-up current
- Single-start or auto-start modes
- Oscillator trimmed for precision duty cycle clamp
- Standard temperature range extented to 105°C
- Remote on/off control
- Self limiting supply voltage
- Standard current mode control

Description

The AS2208A is a simplified pulse width modulation controller, offering similar functionality as that of the AS3842. Based on the AS2214, the AS2208A provides the additional features of low start-up current and overvoltage latching, making it a good solution for adapter applications.


The PWM function is controlled by the current sense comparator for normal current mode control. The COMP pin, which serves as an input to the current sense comparator, provides a 1 mA current source which can be tied directly to the control loop optocoupler. The output stage is a high current totem pole output that sees only 85 ns delay from the PWM comparator.

The AS2208A requires only 100 μ A of start-up current. The undervoltage lockout (UVLO) thresholds are nominally 14V for turn on and 8 V for turn off. The VREG pin, based on a trimmed bandgap reference, provides a temperature compensated 5 V to loads of up to 50 mA. The oscillator discharge current is trimmed to provide guaranteed duty cycle clamping.


Pin Configuration - Top view

Ordering Information

Functional Block Diagram

Pin Function Description

Pin Number	Function	Description				
1	COMP	This is the inverting input to the PWM comparator. A divided and level shifted representation of this voltage is compared to the ISNS input to determine OUT duty cy A 1 mA current source is provided as a pull-up for an optocoupler.				
2	ISNS	A voltage proportional to inductor current is connected to this pin. The PWM uses this information to terminate the gate drive of the output.				
3	RT/CT	Oscillator frequency and maximum duty cycle are set by connecting a resistor (R_T) to VREG and a capacitor (C_T) to ground.				
4	OV	This pin latches OUT low when pulled above 2.5 V. The latch can be reset by pulling OV above 4 V then back to ground.				
5	GND	Circuit common ground.				
6	OUT	This totem pole output is designed to directly drive a power MOSFET switch capable of sourcing and sinking peak currents up to 1 A.				
7	VCC	Positive supply voltage for the IC.				
8	V _{REG}	Output of 5V series regulator.				

Absolute Maximum Ratings

Symbol	Rating	Units
Vcc	Self-Limiting	V
Vcc	20	V
IREF	200	mA
IOUT	1	А
VOUT	20	V
PD	500	mW
Тј	150	°C
T _{STG}	-65 to 150	°C
т	300	°C
	V _{CC} V _{CC} IREF IOUT VOUT PD TJ	V _{CC} Self-Limiting V _{CC} 20 I _{REF} 200 I _{OUT} 1 V _{OUT} 20 P _D 500 T _J 150 T _{STG} -65 to 150

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Typical Thermal Resistance Recommended Conditions Parameter Symbol Rating Unit Package θ_{JA} θ JC Typical Derating 10 - 15 V 8L PDIP 95°C/W 50°C/W 10.5 mW/°C Supply Voltage VCC Oscillator Fosc 50 - 250 kHz **8L SOIC** 175°C/W 45°C/W 5.7 mW/°C

Electrical Characteristics

Electrical Characteristics are guaranteed over full junction temperature range (0 to 105°C). Ambient temperature must be derated based on power dissipation and package thermal characteristics. Unless otherwise specified, the conditions of test are V_{CC} = 15 V; BOK = 3 V; OV = 0V; R_T = 680 Ω ; C_T = 10 nF. To override UVLO, V_{CC} should be raised above 18 V prior to test.

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
5 V Regulator						
Output Voltage	V _{REG}	I _{REG} = 1 mA, T _J = 25°C	4.90	5.00	5.10	V
Line Regulation	PSRR	$9 \le V_{CC} \le 18 \text{ V}$		5	15	mV
Load Regulation		$1 \leq I_{REG} \leq 20 \text{mA}$		5	15	mV
Temperature Stability	TCREG			0.2	0.4	mV/°C
Total Output Variation		Line, Load, Temperature	4.85		5.15	V
Long-Term Stability		Over 1,000 hrs at 25°C		5	25	mV
Output Noise Voltage	VNOISE	$10 \le f \le 100 \text{ kHz}, \text{ T}_{J} = 25^{\circ}\text{C}$		50		μV
Maximum Source Current	IMAX	V _{REG} = 4.8 V	30	120	180	mA
Oscillator						
Initial Accuracy	FOSC	T _J = 25°C	108	120	132	kHz
Voltage Stability		$9 \le V_{CC} \le 18 V$		0.2	1	%
Temperature Stability	TCF	$T_{MIN} \le T_J \le T_{MAX}$		5		%
Amplitude	VOSC	V _{RT/CT} peak-to-peak		1.55		V
Upper Trip Point	V _H			2.80		V
Lower Trip Point	VL			1.25		V
Discharge Current	IDSC		7.50	8.70	9.50	mA
Duty Cycle Limit		R_{T} = 680 Ω, C_{T} = 10 nF, T_{J} = 25°C	46	50	55	%
Over-Temperature Shutdown	Тот			140		°C
Current Sense Comparator						
Transfer Gain	AV _{ISNS}	$-0.2 \le V_{ISNS} \le 0.8 \text{ V}$	2.85	3.00	3.15	V/V
ISNS Level Shift	V _{LS}	V _{ISNS} = 0 V		1.50		V
Maximum Input Signal	VISNS MA	X V _{COMP} = +5 V	1.00	1.08	1.20	V
Input Bias Current	IBIAS ISN	_S V _{COMP} = +5 V		-1	-10	μA
COMP Source Current	Ісомрн	V _{COMP} = +5 V	0.6	1.0		mA
COMP Swing High	VCOMPH		5.2	5.6		V
Power Supply Rejection Ratio	PSRR	$9 \le V_{CC} \le 18 V$		70		dB
Propagation Delay to Output	t _{PB}			85	150	ns

Electrical Characteristics (cont'd)

Electrical Characteristics are guaranteed over full junction temperature range (0 to 105°C). Ambient temperature must be derated based on power dissipation and package thermal characteristics. Unless otherwise specified, the conditions of test are V_{CC} = 15 V; BOK = 3 V; OV = 0V; R_T = 680 Ω ; C_T = 10 nF. To override UVLO, V_{CC} should be raised above 18 V prior to test.

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output						
Output Low Level	V _{OL}	I _{SINK} = 20 mA		0.1	0.4	V
Output Low Level	VOL	I _{SINK} = 150 mA		1.5	2.2	V
Output High Level	VOH	ISOURCE = 20 mA	13	13.5		V
Output High Level	VOH	ISOURCE = 150 mA	12	13		V
Rise Time	^t R	C _L = 1 nF		50	150	ns
Fall Time	tF	C _L = 1 nF		50	150	ns
Maximum Duty Cycle	D _{MAX}		94	97	100	%
Minimum Duty Cycle	D _{MIN}		0			%
Over-Voltage Input	· · ·		•			
OV Threshold	V _{OV}		2.50	2.80	3.10	V
OV Reset Threshold	VVOVH		3.80	4.00	4.50	V
OV Clear Threshold	V _{VOVL}		1.10	1.75	2.20	V
OV Bias Current	IBIAS OV	V_{REG} = 5 V, $V_{OV} \le OV$ Threshold	-1	-0.2	1	μΑ
Under Voltage Lockout						
Start-up Threshold	V _{CC} (ON)		12.5	14.0	15.8	V
Minimum Operating Voltage after Turn-on	V _{CC} (OFF)		7.3	8.0	8.5	AV
Start-up Current	ICC	V _{CC} = 13 V		105	150	μA
Operating Supply Current	ICC			12	20	mA
Supply Voltage Clamp	V _{CC} Zener	I _{CC} = 30 mA		18		V
Output Impedance to GND in UVLO State	Z _{OUT}	V _{CC} = 6 V		22.0		kΩ

Notes